
Comprehensive Failure Characterization

Abstract—There is often more than one way to trigger a fault.
Standard static and dynamic approaches focus on exhibiting a
single witness for a failing execution. In this paper, we study the
problem of computing a comprehensive characterization which
safely bounds all failing program behavior while exhibiting a
diversity of witnesses for those failures. This information can
be used to facilitate software engineering tasks ranging from
fault localization and repair to quantitative program analysis for
reliability.

Our approach combines the results of overapproximating and
underapproximating static analyses in an alternating iterative
framework to produce upper and lower bounds on the failing
input space of a program, which we call a comprehensive failure
characterization (CFC). We evaluated a prototype implementa-
tion of this alternating framework on a set of 168 C programs
from the SVCOMP benchmarks, and the data indicate that it is
possible to efficiently, accurately, and safely characterize failure
spaces.

I. INTRODUCTION

Significant effort in software development is directed at
determining whether program’s behave as intended. While a
test engineer might consider the discovery of evidence of a
program failure as the end of the story, in reality it is just the
beginning. For example, a development team may follow up
by triaging and understanding the failure, then repairing the
fault that led to the failure, and finally assessing the validating
its correctness and deploying the fix. While it is possible
to perform this work manually, there has been significant
research into automating these facets of software development,
e.g.,[39], [33], [32], [36], [37], [49].

All of these development steps could benefit from expanding
the description of the failure from a single input vector to
a more comprehensive characterization. Triaging could po-
tentially identify duplicate reports more easily, understanding
could be improved by identifying multiple ways that the failure
could be exhibited, repairs could be made more robust by
covering the full failing input space, and validation could be
focused on the space of inputs indicated by such a failure
characterization.

In this paper, we explore methods that begin with a single
indication of a program failure and construct a rich char-
acterization of the program behavior that may exhibit that
failure. Our aim is that this failure characterization be both
comprehensive, in that it characterizes all failing behavior,
and constructive, in that it definitively characterizes failing
behavior. Moreover, we seek to render the characterization in
a form that can be exploited by both automated and manual
methods. Towards this end, we define a comprehensive failure
characterization (CFC) as a pair of logical formulae that
bound the failing input space of a program.

Imagine a failure report that includes the test input
(12, 7, ”test”). We seek to compute a pair of formula that

define an upper bound, e.g., I1 > 0 ∧ I2 < I1, and a lower
bound, e.g., I1 > 0 ∧ I2 < I1 ∧ I2 < 10, on the failing input
space; Ii represents the ith input. The upper bound defines
the space of inputs on which the program may fail, whereas
the lower bound defines the space of inputs on which it must
fail. We conjecture that this richer failure information can be
leveraged in manual and automated development processes.
For example, in the example the upper bound indicates that the
third input is not implicated in the failure, which may simplify
program understanding. Whereas the lower bound establishes
a minimal set of inputs for regression testing, the upper bound
establishes a maximal set since inputs outside of that bound are
guaranteed to be failure-free. We discuss selected applications
of CFCs in Sec. VI.

We explore the combination of over and underapproximat-
ing static program analyses to compute CFCs. Overapproxi-
mating analysis tools, such as AbsInt Astrée [16], Facebook
Infer [11], and MathWorks Polyspace [40], have the ability
to prove the absence of certain types of program failures.
This benefit comes with the downside that reports of failures
from these tools may be spurious—they may not correspond
to executable program behavior. Underapproximating analysis
tools, such as Microsoft SAGE [26], KLEE [10], and May-
hem [12], have the advantage that they never report a spurious
failure. This benefit comes with the downside that they may
miss failures and, thus, cannot prove their absence.

For more than a decade researchers have understood that
there are advantages in using these approaches in combination,
e.g., [14], [3], [51], [27]. Conceptually, these techniques alter-
nate the application of over and underapproximating analyses
with the output of each driving the other toward convergence.
Rather than develop a bespoke alternating analysis, we develop
a framework to extract and combine information from existing
static analysis tools to achieve the efficient, accurate, and safe
computation of CFCs.

The resulting framework for alternating characterization of
failures (ACF) leverages the strengths of existing state-of-
the-art analysis techniques and tools, while tolerating their
limitations. We illustrate the ACF framework in the next
section and describe it in more detail in Sec. III. We describe
an instance the framework for C programs that incorporates
state-of-the-art C analyzers in Sec. IV. We report on an
evaluation that assesses the efficiency, accuracy and safety of
ACF it to a corpus of 168 C programs in Sec. V.

II. OVERVIEW

In this section, we describe the concept of a CFC and our
proposed analysis framework to compute failure characteriza-
tions (Fig. 2) using the small simple example in Fig. 1a.

1 i n t main (i n t argc , char∗∗ a rgv) {
2 i n t x = a t o i (a rgv [1]) ;
3 i n t y = a t o i (a rgv [2]) ;
4 i n t tmp = 0 ;
5 i f (y >= 0) {
6 i f (x < 0)
7 x = 0 − x ;
8 f o r (i n t i =0 ; i<y ; i ++)
9 tmp += i ;

10 } e l s e {
11 tmp = y∗y ;
12 }
13 a s s e r t (tmp > 0) ;
14 }

(a) Example C program

−4 −2 0 2 4
−4

−2

0

2

4

f cpa : [Y ≥ 0, Y = 1]

(b) CFC calculated with CPA

−4 −2 0 2 4
−4

−2

0

2

4

fua
2 : [Y = 1, Y = 1]

fua
1 : [Y = 0, Y = 0]

(c) CFC calculated with UA

Fig. 1: Example program with calculated CFCs

a) Detecting Failures: There are a variety of methods
for detecting program failures, but we focus here on the use
of state-of-the-art static program analyzers. These tools vary
in their cost, in their ability to detect failures, and in the
guarantees that they provide about failure reports.

For example, CPAchecker [6], [17] (CPA) is the analyzer
that finished second in the 2016 SV-COMP competition [45].
When run on this example with the “-svcomp-16” option, the
tool reports a failure when the false branch is taken at line 5.
This is, however, a spurious failure report that arises because
CPA is designed to overapproximate program behavior so as
to soundly prove the absence of failures. The abstraction of
the program state used by CPA leads to this inaccurate failure
report—a problem that is inherent with overapproximation.

Different analyzers may report different failures and with
different fidelity. For example, UltimateAutomizer [30], [47]
(UA), the overapproximating analyzer that won the 2016 and
2017 SV-COMP competition [46], reports a failure when the
true branch at line 5 is taken, then the false branch at 6 and
the loop header at 8. Executing this path leads to a violation of
the assertion at line 13 and, thus, represents a definite failure
of the program.

Unlike CPA and UA, CIVL [42], [13] is an underapprox-
imating analyzer for C programs. It also reports the failure
detected by UA and, moreover, it is able to compute that the
failure corresponds to running the program with the second
parameter equal to 0, i.e., it computes a constraint Y = 0
that characterizes the failing input sub-space. For clarity in
the presentation we use Y to model the value of variable y.

b) Alternating Characterizion of Failures: Our proposed
framework seeks to compute a efficient, accurate, and safe
characterization of program failures. Our insight is that this
can be achieved by alternating the application of over and
underapproximating static analyses to leverage their strengths
while accomodating their weaknesses. Fig. 2 sketches the
architecture of the ACF framework.

The analysis accepts a program, p, and a reachability
property, ϕ, as input; assert statements are a natural means
of expressing ϕ. It computes a comprehensive failure char-
acterization, F , which consists of an upper bound that is

guaranteed to subsume all failing behavior and a lower bound
that is guaranteed to be subsumed by all failing behavior. F is
constructed incrementally by combining characterizations of
failure sub-spaces, f , that are computed by iterations of the
ACF framework.

The framework relies on the notion of conditional program
analysis [5] where information is computed about partial
analysis results and then used to direct subsequent analysis,
for instance, to avoid repeatedly analyzing program behavior.

There are five major phases of the framework, numbered in
the black circles, depicted in the Figure along with the data
and control flows between them. We elide some detail here,
but present a complete explanation in Sec. III and in Alg. 1.

The POSSIBLE failure 1 phase seeks to detect a new
potential program failure using an overapproximating analysis
A. It uses the upper bound of the most recently computed
failure sub-space, f.up, to condition the analysis to explore
new behavior. If A is unable to detect a new failure then the
conditioning, c, is generalized and the analysis repeated. When
generalization is required we say that the conditioning was
ineffective. This iterative process will lead to the detection of
a new failure or to proving the absence of additional failures,
then the final effective conditioning is used to define the failure
sub-space, [c, f.lo], to MERGE with F (abbreviated M in the
figure). The phase returns evidence of a failure or validity, as
eo where validity is denoted eϕ, and the effective conditioning,
c, that allowed A to compute that result.

The DEFINITE failure 2 phase seeks to confirm a po-
tential failure, or demonstrate that it is spurious, using an
underapproximating analysis A. It uses the overapproximating
evidence of failure, eo, to condition the analysis to explore be-
havior in the neighborhood of the potential failure. This phase
also uses an iterative refinement of conditioning to compute a
characterization of the failure, e¬ϕ, which is returned as eu.
In this case, however, the conditioning is specialized to further
restrict the analysis. If the refinement process fails, then A is
applied to characterize a region of valid behavior, by detecting
violations of ¬ϕ, under the conditioning of eo—this is used
to block subsequent spurious failure reports.

These phases are complementary. For example, the first

2

p, ϕ f 6= ⊥
A(ϕ)

GEN.

M(F, [c, f.lo])

A(ϕ) V ∨ {v}

eo = eϕ p⊗ COND(c)
A(ϕ)

SPEC.

eu = e¬ϕ

A(¬ϕ)

SLICE

F

POSSIBLE failure

1

DEFINITE failure

2

block valid

3
embed condition

4

slice failure 5

1

f.up

0

v

eo, c

eo, c

0

1

eo

eu

f, v

cc

c c 0

1

Fig. 2: Alternating Characterization of Program Failure

exploits abstraction approaches to efficiently analyze looping
program behavior, whereas the second exploits symbolic repre-
sentations to accurately analyze complex branching along pro-
gram paths. The alternation of these phases use conditioning in
complementary ways. Conditioning directs overapproximating
analyses away from failure sub-spaces that have been already
analyzed and directs underapproximating analyses towards a
sub-space that harbors a potential failure.

c) An Example: Consider a configuration of the frame-
work where A is CPA and A is CIVL. The analysis begins,
with f 6= ⊥, by running phase 1 using CPA with f.up =
false, i.e., no behavior is excluded from the conditioned
analysis. As explained above, CPA reports a failure along the
path . . . , 5, 11, 13 which is encoded in eo and c is initially
false. Since evidence of a failure is found the comparison with
eϕ is false and ACF continues to the right in the Figure—
in this case the conditioning is trivial so the program is
unchanged. Phase 2 uses eo to condition CIVL by directing
it to analyze the failing subspace of behavior reported by
CPA. CIVL is unable to find an error, so it analyzes the
complementary property to compute Y < 0 as evidence of
valid behavior which is returned as eu and which is fed back
as v to begin a second iteration.

On this iteration, f = ⊥ and v = Y < 0 which activates
phase 3 to block CPA analysis from considering that path.
This succeeds in avoiding the spurious failure and CPA reports
a new failure eo = . . . , 5, 6, 7, 8, 9, 8, 13 with c = v = Y < 0.
With non-trivial conditioning phase 4 embeds Y < 0 into
the program, using an assume statement, to ensure that no
subsequent analysis considers it. In the second exection of
phase 2 , CIVL confirms this failure and computes eu = Y ≥
0 ∧X < 0 ∧ Y = 1. Phase 5 is able to determine that input
X is independent of the failure, through a form of program
slicing, and calculates a safe failure characterization of f =
[Y ≥ 0 ∧ Y = 1, Y ≥ 0 ∧ Y = 1] which is fed back to begin
a third iteration.

CPA attempts to restrict analysis to exclude f.up, but its
abstractions are too imprecise and it finds the same error as
before. This triggers the generalization of the upper bound of
f to be Y ≥ 0 which is effective in blocking further failure
reports by CPA and the algorithm terminates with F = {[Y ≥
0, Y = 1]}. Fig. 1b illustrates the bounding characterization of

the failure space that is computed—failures may be exhibited
when Y ≥ 0, the light gray space, and they must be exhibited
when Y = 1, the darker gray space.

This execution of the ACF framework required 3 iterations
involving 4 conditioned runs of CPA, 3 conditioned runs of
CIVL (2 for ϕ and 1 for ¬ϕ), generalization of 1 failure char-
acterization, blocking of 1 set of valid behaviors, slicing of 1
clause (and variable) from the characterization, and it resulted
in a CFC whose upper bound substantially overapproximates
the lower bound.

Instantiating the framework with UA instead of CPA and
running on the same program requires just 2 conditioned runs
of UA and CIVL and involves no generalization. Slicing is
applied to each element of the computed CFC to remove a
clause and the resulting upper and lower bounds coincide as
illustrated in Figure 1c.

III. AN ALTERNATING CFC FRAMEWORK

Let P be the domain of programs and Φ the domain of
reachability properties. A program analysis, A, targets a pair
of elements 〈p, ϕ〉, p ∈ P and ϕ ∈ Φ, in order to provide
information about whether the executions of p conform to ϕ,
i.e., whether p |= ϕ.

Most modern program analysis frameworks produce some
form of evidence about their claims of property validity or
violation. Evidence of a violation can be as complete as a
trace of program execution leading to a potential failure or as
partial as designating a single statement at which the failure
may occur. A general model for such evidence, termed an
error automaton, has been developed by the organizers of SV-
COMP [7]. These automata would be used as evidence of
failure for an overapproximating analysis, e.g., eo on output
from 1 or 3 . Error automata have a start state that coincides
with the initial program state and transitions that are labeled
by control flow branches. The language of an error automaton
is a set of program executions, e.g., the set of all executions for
an automaton that accepts immediately, or a single execution
which has a single enabled transition at each state.

Let E be the domain of evidence produced by a program
analysis. This would include evidence of property validity, eϕ,
or violation, e¬ϕ. An evidence producing program analysis is
A : P × Φ → E All 32 analyzers in the 2017 SV-COMP

3

competition are evidence producing including: CPA, UA, and
CIVL.

An over-approximating analysis A ∈ A is one where
A(p, ϕ) = eϕ =⇒ p |= ϕ. An under-approximating analysis
A ∈ A is one where A(p, ϕ) = e¬ϕ =⇒ p 6|= ϕ.
Conceptually, A is capable of proving property validity and
A is capable of proving property violation.

We assume that a program, p ∈ P , has a set of input
statements, i ∈ I , that return well-typed values, where dom(i)
is the domain of i’s type. To simplify the presentation of
ACF, in this paper we formalize the analysis for programs that
read from each input statement a single time, thus the input
domain of p is D =

∏
i∈I dom(i). Given this D is finite.

The framework, and the implementation described in Sec. IV,
work more generally by modeling the kth execution of an
input statement by the pair (i, k), and the input domain as the
union of execution-specific input domains,

∏
1≤j≤n dom(ij),

where the inputs on an execution are 〈(i1, 1), . . . , (in, n)〉. The
implementation can enforce a bound on the length of sequence
to restrict analysis to a finite D; in doing this it may lose
accuracy by characterizing all inputs beyond the given length
as potentially failing.

We consider sequential programs in this work; leaving
extensions to concurrency for future work.

A. Failure Characterization

We characterize failures using logical formulae that encode
regions of D on which failures are detected. Let Fp,ϕ be an
exact characterization of the input space on which the program
fails relative to ϕ.

Definition 1. A comprehensive failure characterization (CFC),
[C,C]ϕ, is a pair of logical formulae that semantically bound
the program’s failure space, Fp,ϕ, such that C =⇒ Fϕ =⇒
C.

CFCs lie between two extremes: an exact CFC, where the
bounds coincide, i.e., C = C = Fϕ, and a trivial CFC, where
the bounds are non-informative, i.e., [false, true]. We work
with a particularly advantageous form of CFC that permit
algorithms to operate on elements of the CFC encoding.

Definition 2. A disjoint CFC is a set of pairs of formulae
F , where f ∈ F can be written f = [f.up, f.lo], and such
that the upper bounds are disjoint, ∀f, f ′ ∈ F : f 6= f ′ =⇒
f.up ∧ f ′.up = false, and the upper bounds subsume the
lower bounds, ∀f ∈ F : f.op ∧ ¬f.lo = false. We write
upper(F) =

⋃
f∈F f.up and lower(F) =

⋃
f∈F f.lo.

In a disjoint CFC, there may be elements of the upper
bound, for which the associated lower bound cannot be char-
acterized precisely. In such a case the lower bound is false.
While this lower bound is non-informative, its use is logically
consistent given the disjunctive nature of the lower bound.

Ideally F encodes a small failing subspace of D. In the
worst-case, upper(F) = D and all of the input space is
implicated. Even here ACF is able to isolate the imprecision to
one element of the partition that will have as its upper bound

the complement of the disjunction of all of the other upper
bounds. The remaining partitions provide useful information
about failures, especially in their lower bounds.

For example, on the program Ackermann02 false-unreach-
call true-no-overflow true-termination.c, UA directs CIVL to
the failure, and after blocking this exact characterization, UA
declares the remaining program failure-free. This is the ideal
case. At the other extreme, on the program pc sfifo 2 false-
unreach-call false-termination.cil.c, UA finds directs CIVL to
a failure on the first iteration. After this failure is blocked, the
overapproximators can neither find a new failure nor declare
the program safe, and the upper bound moves to true.

B. Conditioning Program Analysis
The goal of conditioning is to restrict the program behavior

that is subjected to analysis. For example, to restrict the
propagation of abstract states across a branch in A or prune
the exploration of a sub-tree in A.

There are many possible ways to define conditioning, and
in this work we employ two different approaches. First, given
eo as an error automaton, the automaton structure is used to
direct the state-space search performed by A. Any branches
that are inconsistent with eo go unexplored. Second, given
eu as a logical formula defined over D, we instrument the
program with the statement assume(¬eu) to inform A that
it need not consider that behavior. Regardless of the approach
used, we denote the conditioning of p’s behavior for analysis
as p⊗ COND(c), for conditioning c.

While conditioning A aims to restrict the analysis to avoid
previously analyzed failing sub-space, it does not guarantee
that this will be effective. For example, if the expression e
in assume(e)@l cannot be precisely modeled by A’s abstract
domain then the semantics of the assume will be overapprox-
imated. Generalization is used to address this issue.

Dually, conditioning A aims to restrict the analysis to a
failing space of the program behavior in order to confirm
the failure and characterize it. Effective conditioning for A
means that the failures that are characterized are guaranteed
to be executable. When such guarantees are not computed, e.g.,
due to timeouts or overapproximation in underlying constraint
solvers, specialization further restricts the conditioning.

Within phases 1 and 2 the use of conditioning is specu-
lative in that we are seeking to determine if the conditioning
is effective. In the overall flow of the ACF algorithm, phase
2 generates candidate conditioning, phase 1 confirms that it

is effective or generalizes it until it is, and phase 4 embeds
it into the program model for use in all subsequent analyses.

C. An Alternating CFC Algorithm
The structure of the algorithm is depicted in Figure 2.

Algorithm 1 provides addition details of the computation of
CFCs. The ACF algorithm depends on certain properties of
the algorithms that it combines. Specifically, it assumes that
over and underapproximating program analyses are typed:

A : P × Φ→ {eϕ, e¬ϕ,⊥} (1)
A : P × Φ→ {e¬ϕ,⊥} (2)

4

where ⊥ encodes the inability of the analysis to compute a
result, e.g., due to a timeout, encountering an unsupported
language feature, or unsoundness relative to the nature of the
analysis’ approximation.

In addition, it assumes the strict monotinicity and anti-
monotonicity of generalization and specifialization with re-
spect to a finite order on formulae.

Function POSSIBLE, lines 1-9, along with lines 32-33
realize phase 1 . The additional detail in the algorithm is in the
use of a cache of previously computed analysis results, seen,
and the logic that continues GENERALIZATION as long
as no new analysis result is seen or the conditioned analysis
is ineffective. Note here that the generalization process will
converge to true, due to monotinicity. Line 33 will MERGE
the new component of the CFC into F ensuring that the result
is a disjoint CFC.

Function DEFINITE, lines 10-22, along with line 46 realize
phase 2 . Here the original conditioning, c, is recorded, in c′,
for later use should the analysis not be able to detect a failure.
As above, the iterative SPECIALIZATION of conditioning
will terminate when the conditioned analysis is effective or
when the specialization reaches the limiting false value, due
to anti-monotonicity. If a sound underestimating characteriza-
tion of the failure, e¬ϕ, is found it is returned. Otherwise the
original conditioning is used to analyze the negation of the
property, i.e., to find a definitive characterization of program
behavior that is consistent with ϕ. This may be ineffective,
in which case evidence of valid behavior is false which will
trigger termination on the next iteration in phase 3 .

The main ACF algorithm initializes the data structures, lines
24-29, and then begins the alternating iterative computation of
a CFC. Note that the algorithm uses p′ as the version of p that
accumulates the effective conditioning across iterations.

The pair f, v drive the behavior of each iteration. One or
the other is well-defined, the other has value ⊥, and it is used
to select the phase to execute.

Once completed if the phase has determined, at line 42,
that there are no additional failures or that A was ineffective,
then the accumulated CFC, F , is returned. Otherwise, effective
conditioning was computed and it is embedded into the
program at line 45.

Line 47 applies slicing to the program using the evidence
of failure, eu, which can be thought of as encoding a program
trace. A dynamic slicing algorithm can be used to eliminate
branches from the trace that are independent of the failure.

Finally, lines 48-52 determine whether the results of phase
2 computed evidence of failure or evidence of validity and

update the f, v pair accordingly.

Theorem 1 (Termination). Algorithm 1 terminates if A and
A terminate and GENERALIZE and SPECIALIZE are strictly
monotone and anti-monotone relative to a finite ordering on
formulae, respectively.

Proof. There are three loops in the algorithm: lines 1-6, lines
13-16, and lines 30-53.

Algorithm 1 Alternating Characterization of Failures

1: function POSSIBLE(p, c, ϕ) . Detect possible failure
2: e← A(p⊗ COND(c), ϕ)
3: while e ∈ seen ∨ e = ⊥ ∨ c 6= true do
4: c← GENERALIZE(c)
5: e← A(p⊗ COND(c), ϕ)
6: end while
7: seen← seen ∪ {e}
8: return e, c . evidence, effective conditioning
9: end function

10: function DEFINITE(p, c, ϕ) . Detect definite failure
11: c′ ← c
12: e← A(p⊗ COND(c), ϕ)
13: while e = ⊥ ∨ c′ 6= false do
14: c′ ← SPECIALIZE(c′)
15: e← A(p⊗ COND(c′), ϕ)
16: end while
17: if e = e¬ϕ then
18: return e . failure evidence
19: else
20: return A(p⊗ COND(c),¬ϕ) . validity evidence
21: end if
22: end function
23: function ACF(p, ϕ)
24: F ← ∅
25: V ← ∅
26: f ← [false, false]
27: v ← false
28: seen← ∅
29: p′ ← p
30: loop
31: if f 6= ⊥ then
32: eo, c← POSSIBLE(p′, f.up, ϕ)
33: F ← MERGE(F, {[c, f.lo]})
34: else
35: eo, c← A(p′ ⊗ COND(s), ϕ), v
36: if eo = ⊥ ∨ c = false then
37: F ← F ∪{[(

∧
f∈F
¬f.up)∧

∧
v∈V
¬v, false]}

38: else
39: V ← V ∪ {v}
40: end if
41: end if
42: if eo = eϕ ∨ eo = ⊥ then
43: return F
44: end if
45: p′ ← p′ ⊗ c . embed conditioning henceforth
46: eu ← DEFINITE(p′, eo, ϕ)
47: es ← SLICE(p′, eu)
48: if eu = e¬ϕ then
49: f, v ← [es, es],⊥
50: else
51: f, v ← ⊥, es
52: end if
53: end loop
54: end function

5

Termination depends on the existence of an ordering on the
formulae that are used to encode conditioning. The framework
can be instantiated with any finite ordering. For example, con-
tainment ordering on sets of conjuncts from a CNF encoding
of a formulae.

An execution of lines 1-6 (13-16) is guaranteed to termi-
nate if every call to A (A) terminates and if GENERALIZE
(SPECIALIZE) produces a result that is greater (lesser) in the
ordering due to the finite bound on chains in the ordering.

The outer most loop executes once for each element of F
and V that is computed. New elements are only computed if
the conditioning is effective or in two special cases: the loop
at line 3 exits because c = true in which case e = ⊥ which
triggers termination at line 42, or line 37 is executed which
is also followed by termination at line 42. There can be only
finitely many elements of F and V , since the upper bounds
of f ∈ F and the elements of V are disjoint and their union
must be a subset of D.

Theorem 2 (Safety). Algorithm 1 terminates with F such that
the failure space of p relative to ϕ, Fp,ϕ, is bounded by F ,
lower(F) =⇒ Fp,ϕ =⇒ upper(F).

Proof. For all elements of F , the lower bounds are computed
by A and then sliced. By definition A computes a safe un-
derapproximation and thus any failure detected is guaranteed
to be feasible. If no failure is detected, then false is used as
the lower bound which is guaranteed to be safe. Slicing only
eliminates sub-formulae that are provably independent from
the failure characterized by the partition. Thus, while the sliced
lower bound may subsume the original error detected by A it
is guaranteed to underapproximate the space of all errors that
are equivalent up to execution of independent branches.

For any iteration of the ACF algorithm, the upper bounds
from all prior iterations are conditioned into the program, by
line 45, and the upper bound from the current element of
f is conditioned in POSSIBLE. The algorithm terminates
only if: (1) the conditioning of all upper bounds permit A
to prove the program free of failures, or (2) a final run of
A results in ⊥ in which case line 37 adds an element to F
that guarantees that upper(F) = D. The first case guarantees
that the upper bounds of F are safe, since A computes a safe
overapproximation, and the second case is trivially safe.

IV. A PROTOTYPE ACF IMPLEMENTATION

To explore ACF we implemented Alg. 1 along with incorpo-
rating or adapting other analysis tools to define the following
components: analyses, slicing, conditioning, generalization,
and specialization.

Our implementation consists of 2770 non-comment source
lines (NSLOC) of Ruby. We chose Ruby because it has
facilities for easily processing text-based files which plays
an important role in integrating external tools, e.g., parsing
tool output. These facilities also enabled us to implement the
source-level instrumentation that is required by conditioning.

We plan to share our prototype implementation with the
broader community later in 2017. This will include sharing

both the standalone ACF components and going through the
pull-request approval process for external tools.
Analyses We focused on analysis tools that participated in
the annual International Competition on Software Verification
(SV-COMP). This allowed us to take advantage of the already-
existing corpus of hundreds of benchmarks of C programs
submitted by the community. The competition also requires
that these tool report possible failures in a specified language,
so there was a common interface that we could build on.

Our implementation permits multiple overapproximators to
be used in a sequential portfolio, i.e., we run one after the other
in sequence; we plan to replace this with a parallel portfolio to
reduce analysis time. We incorporate UA and CPA, since both
performed well in the two most recent SV-COMP instances. In
addition to the standard sequential configuration of CPA, we
also used two other CPA configurations that participated in the
competition—one that combines a value analysis, a predicate
analysis, and a technique for caching analyzed blocks [24],
and another that implements a variant of k-induction [4].

UA and three different configurations of CPA constitute
our portfolio of overapproximators. The prototype also uses a
portfolio of underapproximators, but we have only populated
it with CIVL. The portfolio management implementation
establishes an execution time bound ensuring that all analysis
runs terminate.

Our prototype can accommodate any number of analyzers,
or configurations, from the 32 that participated in SV-COMP
2017 and we will explore the benefits of a broader portfolio
once we can execute them in parallel.
Slicing To determine which branches were relevant in trigger-
ing the failure, we implemented a version of Xin and Zhang’s
dynamic slicing algorithm [48], on the CIVL representation
of the replayed failure trace. This algorithm detects branches
on the failing trace that are independent from the failure and,
consequently, can be removed. Because this slicing algorithm
detects only dynamic control dependence, to ensure a safe
underapproximation—one whose logical formula encodes def-
inite failure traces—we also run an inexpensive static analysis.

This static analysis seeks to determine that branches not
taken will not impact the detected failure. To do this, for each
branch identified as independent we run a depth-first search
(DFS) on sub-control flow graph rooted at the branch not
taken in the trace; the DFS backtracks when it rejoins the
failure trace. If the DFS encounters a “suspicious” statement,
then we assume that there may be a dependence and revert
the classification of the branch as independent. We define
a suspicious statement as one of: assignment to a variable
that is data-dependent on the failure, a goto statement, a
function call, and any statement involving pointers (including
arrays). Slicing is implemented as a configuration option,
-sliceAnalysis, within CIVL’s error “replay” feature.
The implementation consists of 1851 NSLOC of Java code.
Conditioning There are two kinds of conditioning in an ACF.
The first is a standard application of directed symbolic exe-
cution, where the execution engine is guided down specified

6

branches, instead of exploring all possible branches. This kind
of conditioning only applies to the underapproximators.

The directions at each branch come from the witness
graphml files produced by the overapproximator when a pos-
sible failure is reported. If a branch is not specified in the
witness file, then we inject no instrumentation at this branch,
and the underapproximator will do its standard exploration of
both branches at that point. This is implemented as a configu-
ration option, -direct, within CIVL’s “verify” feature. The
implementation consists of 338 NSLOC of Java code.

In our experience, both UA and CPA produce witnesses
that give full direction, though our implementation of directed
symbolic execution can handle the general case of partial
direction.

The other kind of conditioning is seen by both the over
and under approximators. This is the injection of assume
statements, intended to direct the tools away from exploring
already-analyzed subspaces. Within the assume statements,
we place the negated formulae of the upper characterization.
We place the assume statements just before the points at
which a failure is asserted. This was an implementation
decision that guaranteed that all inputs have been read before
assuming constraints on their values. In the future, we would
like to explore placing the assume statements at the top of the
program to immediately prune the state space that has yet to
be explored. Overapproximator conditioning is implemented
in our Ruby code base.
Generalization Initially ACF attempts to condition f.up (line
32 in Alg. 1) to avoid previously detected failures. If that
is unsuccesful, generalization is applied to compute effective
conditioning.

The prototype implements a structural generalization of
f.up, which is always a conjunctive formula. To generalize a
conjunction of n clauses, we first construct the powerset lattice
over the set of conjuncts; this lattice has height n, f.up as the
top element (at height n), and true as the bottom element
(at height 0). Having failed to demonstrate that the element
at height n constitutes effective conditioning, we determine
whether the elements at height 1, i.e., the singleton clauses,
are effective. For those that are effective we compute the least-
upper-bound and determine if it is effective; if k singletons are
effective then the lub will be at height k. We refer to this as
a “round” of a binary search on the conditioning sub-lattice.
Each round successively narrows that sub-lattice, by raising the
height of the bottom and lowering the height of the top. This
process defines a bounded finite order and thus, generalization
is guaranteed to terminate. Generalization returns the effective
condition that is lowest in the lattice. If none are effective, then
true is returned.

Generalization is implemented in our Ruby code base. For
very large formulae, we control runtime by specifying an upper
bound on the number of rounds of generalization that can be
computed.
Specialization In our prototype ACF, there is no imple-
mentation of specialization. The need for specialization—the
underapproximator returning a failure report that cannot be

verified with certainty—did not arise in the 168 programs
analyzed.

V. AN EXPLORATORY STUDY OF ACF
We conducted a study to explore the cost and effectiveness

of ACF for computing CFCs of C programs. Our goal is to
provide information about the efficiency, accuracy, and safety
of the ACF framework.
RQ1: How does the total ACF runtime and the runtime of
ACF components vary across programs?
RQ2: How does the accuracy of the computed CFCs vary
across programs?
RQ3: How do the ACF components that ensure safety influ-
ence the efficiency of ACF?

A. Subject Selection

Our study uses a selection of the SV-COMP bench-
marks [44]. In particular, we started with the set of 3624
C programs in the benchmark that have failures; these are a
combination of real failures and seeded failures. Our goal is to
explore the cost-effectiveness ACF so we limited ourselves to
programs on which at least one overapproximator completed
within the timeout of 900 seconds. This left 718 C programs
with failures. SV-COMP has both failing and non-failing
variants of C programs and in ACF we expect to condition
analyses so that they can ultimately verify a program failure-
free. For this reason, we removed 128 benchmarks for which
the non-failing variant could not be proven so by an overap-
proximator within the timeout. A similar filtering removed 244
benchmarks based on the ability of the underapproximator to
complete its analysis. This left 346 C programs for our study.

During the course of our study we detected 104 SV-COMP
benchmarks that either read no input or read no input on failing
behaviors. We do not think that these are representative of
real programs failures, since all program runs lead to failure,
and keeping these in our study would inappropriately, albeit
positively, bias our results. We established a maximum run-
time for ACF of 13 hours, which led us to drop another 74
programs.

This selection process resulted in a diverse set of 168 failing
C programs that span the gamut of categories in the SV-COMP
benchmark.

B. Experimental Setup

Our implementation is purely sequentially and was executed
on a Opteron 6376 processor (2.3 Ghz) with 192 GB of
RAM running Scientific Linux. Our analysis portfolio used
configurations of: CPA version 1.6.1, UA version 0.1.8, and
CIVL version 1.7.3, with a 15 minute timeout.

C. Results and Discussion

We report results of running our ACF implementation
on the 168 SV-COMP C programs both in aggregated data
and through a series of plots that depict the variability of
informative metrics across the programs. All of the underlying
data from our study are available at http://www.mediafire.com/
file/9biz38d74icd831/analysis logs.zip.

7

Component Avg. Max. Min. % Total
POSSIBLE 4419 24766 22 43.6%
DEFINITE 86 392 2 0.8%
GENERALIZE 4381 38042 0 43.2%
SLICE 90 430 2 0.9%
Total 10137 42481 29

TABLE I: ACF runtime (rounded to the nearest second)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140 160 180

Slice time (sec)
Definite failure time (sec)
Possible failure time (sec)
Generalization time (sec)

Fig. 3: Total and Component ACF Runtime

Each plot uses a single “impulse” to record the metric for the
run of ACF on a program. The impulses are plotted from high
to low moving left to right on the horizontal axis. These plots
are effective at depicting the trend across the set of subject
programs. Note that the ith impulse in a pair of plots may not
correspond to the same program.
RQ1 (efficiency): Table I reports the average, maximum, and
minimum times, in seconds, to run ACF in our study. The
average time to compute a CFC is 2.8 hours. This runtime
is dominated by the cost of running overapproximators and
generalization; each taking on average just over 43% of the
runtime. Not listed in the table is the cost of the core ACF im-
plementation which, for example, integrates the components,
performs conditioning, and merges disjoint partitions. This
comprises 11.5% of the analysis time on average.

Fig. 3 shows substantial variability in runtime across the 168
programs. This is a stacked impulse plot with generalization
on the lowest part of the impulse, then possible failure time,
then definite failure, and slice time at the top. Definite failure
and slice times are visible when zooming in on the plot.

Fig. 4 shows the variability in the number of iterations of
ACF needed to reach convergence. This ranges from 1 to 27
across the data set, but more than a third of the programs
required 5 or more iterations. This is due to, at least in part, to
the fact that for more than 50 programs the overapproximators
detected spurious failure reports which had to be blocked to
reach convergence.

While the reported runtime of ACF is significant, the study
has revealed two optimizations that promise to significantly
reduce that time.

First, replacing our sequential portfolio with parallel execu-
tion of instances of A will reduce POSSIBLE by up to a factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120 140 160 180

Number of iterations

Fig. 4: ACF Iterations to Convergence

of 4. While this best case is unlikely to be observed, more
than half of the benchmarks encountered timeouts, as many
as 19 for CPA and 27 for UA in a single run, which suggests
significant room for improvement.

Second, each round of generalization analyzes two “layers”
of the powerset lattice of conjuncts for a given f.up. The first
round involves a single run of A conditioning all conjuncts,
i.e., the full formula, and |f.up| runs each conditioning a
single conjunct. We limited our experiments to a single round
and across the 279 generalization instances in the study we
observed 1 ≤ |f.up| ≤ 72, with an average of 13. We
use the sequential portfolio to solve these, which means that
parallelizing generalization could reduce runtime by a factor
of 4-288 and a factor of 52 on average.
RQ2 (accuracy): The accuracy of a CFC should be judged
based on the the input space it describes, i.e., how many failing
inputs are not characterized by the lower bound, how many
non-failing inputs are characterized by the upper bound. This
presupposes we know the exact failure space of the program,
which is hard to determine. In this study, we use two proxy
measures to provide information on accuracy. First, we know
that any CFC partition that is exact is completely accurate—
the upper and lower bounds coincide. Second, we know that
any CFC partitions that have true as an upper bound are
inaccurate—since we removed programs from the study that
failed on all inputs. Intuitively, the greater the number of exact
partitions and the fewer the number of true-partitions the more
accurate the analysis.

The CFCs for all 168 programs in the study were comprised
of 532 partitions. 265 (49.8%) of the partitions were exact and
5 had true values as upper bounds.

Fig. 5(middle) plots the variability across the examples in
terms of the number of partitions computed for the CFCs and
whether those partitions were exact or inexact. The significant
number of inexact partitions corresponds to the need for
generalization across the study subjects.

Generalization influences the accuracy of upper bounds, but
slicing influences the accuracy of lower bounds, i.e., they are
generalized yet they remain underapproximations of failure.
Fig. 5(left) plots the effect of slicing across the study. For

8

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180

Conjuncts sliced

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

Inexact partitions
Exact partitions

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160 180

Generalizations

Fig. 5: Data on ACF accuracy and safety

more than a third of the programs, some slicing is performed
indicating its value. Slicing has an effect on performance as
well, since reducing the size of f.up reduces the cost of
generalization.

Our prototype ACF computed exact CFCs for 49 programs.
For 55 programs, the gap in bounds across all partitions in the
computed CFC was a single conjunct—generalization moved
just one step up the lattice. The maximum gap in our study,
as measured by conjuncts, was 7. In total, CFCs for 163 of
the 168 programs had non-true upper-bounds, indicating that
they characterized a strict subset of the input space as failing.

Our study does not quantify accuracy in absolute terms, nor
does it quantify the partition gaps in terms of their semantics,
i.e., the size of the partitions input sub-space. We plan to
explore this in future work. The study does provide evidence
that even when ACF is configured with a limited form of
generalization it can converge to CFCs that bound the failure
space to a strict subset of the input space.
RQ3 (safety): The safety of CFCs computed by ACF is based
on the soundness of A and A and the use of generalization.
We take the former as a given and present data on the use of
generalization in Fig. 5(right).

More than two-thirds of the subject programs require at least
some generalization. This is a clear indication of the necessity
of generalization for computing safe CFCs. The discussion
above describes the runtime cost of generalization and while
we have suggested ways that cost may be reduced, that cost
is unavoidable in computing safe CFCs.

D. Validity and Generalizability of Findings
With regard to internal validity, we have conducted exten-

sive testing and post-analysis of the computed CFC data to en-
sure that it is safe and have only used static analyses that have
proven to be robust in the SV-COMP competitions [45], [46].
The SV-COMP benchmark suite, while limited, is updated
annually to reflect the challenges to static analyses found in
the broader population of C programs. While we do not claim
generalizability of our results to all C programs, using SV-
COMP programs constitutes a common convenience sample
used in evaluating C static analysis tools. Moreover, its use
promotes the replicability and reproduction of our study.

VI. APPLYING CFCS

We conjecture that CFCs have a wide range of software
engineering applications. We discuss two such applications
here.

a) Fault Repair and Fix Completeness: The literature
has demonstrated the challenges of fixing a bug completely,
i.e., fixing all manifestations of a fault in a code base. Recent
studies of a range of code bases have reported the occurrence
of bug fixes that are incomplete at rates of 9% [28], 12% [31],
and more than 14% [50]. Analysis of this incompleteness
stems from multiple sources, but all of these studies find
that a failure to fully understand the failing program behavior
is a significant contributing factor. A key step in repair,
whether manual or automated, clearly involves a complete
characterization of how a failure may be exhibited. CFCs
compute exactly that.

To understand how this might be used, consider the recent
automated fault repair technique Angelix [37]. Like most
automated repair techniques, Angelix relies on a test suite both
as the definition of the failing input space and as an encoding
of the repair correctness criteria. Computing CFCs for failing
tests would produce a safe characterization of the failing input
space that can be used to direct Angelix’s symbolic execution
based repair method to produce more robust repairs.

b) Quantitative Program Analysis: Recent years have
witnessed the development of quantitative program analysis
techniques built on a combination of symbolic execution and
model counting [9], [8], [23], [22], [34], [25]. These have
been shown to be useful in computing quantitative information
about program behavior ranging from system reliability esti-
mates [23] to secure information flow and side-channel attacks
[38].

These techniques work by exploring the symbolic state
space of a program, formulating path conditions for reachable
states, invoking exact or approximate model counting tech-
niques to estimate the size of the input space satisfying those
conditions, and then computing the appropriate quantitative
metric, e.g., probability of failure, probability of information
leakage, etc. Unfortunately, these techniques suffer from the
limitations of all symbolic execution techniques—their ab-
stractions are not well-suited for characterizing loops. This
leads them to designate regions of program behavior that
are not analyzed (e.g., because of bounds on the symbolic
execution) as uncertain (e.g., “gray” nodes in [23]). ACF offers
a means of addressing this uncertainty since A are designed
to analyze looping behavior.

Moreover, a CFC, F , computed by ACF is well-suited
to subsequent quantitative analysis. First, F is made up of
disjoint elements, each of which can be counted independently

9

and the resultant counts can be summed. Given the complexity
of model counting, this can offer exponential reductions in
cost. Second, for a given element, f ∈ F , when f.up = f.lo
one need count only a single formula. Moreover, the coin-
cidence of upper and lower bounds provides more precise
information for the input sub-space characterized by such
elements. Third and most importantly, a CFC guarantees that
inputs in ¬upper(F) do not lead to program failures, thus, the
uncertainty of quantitative analysis results is due only to the
gap in F ’s bounds, i.e., #(upper(F) ∧ ¬lower(F)), which
again can be computed on a per partition basis.

VII. RELATED RESEARCH

There has been significant recent interest in program analy-
ses that mix may and must analyses, e.g., [43], [29], [2], [1],
[18], [27], but these ideas go back more than two decades, e.g.,
[41], [20], [14], to seminal work on abstraction-based model
checking [21], [19]. Perhaps the best known, and most influen-
tial, alternating analysis framework is counterexample-guided
abstraction refinement (CEGAR) [14]. CEGAR performs a
forward analysis using overapproximating abstractions of pro-
gram states and when a potential error is detected, it switches
to a backward underapproximating analysis whose results are
used to refine the overapproximation for the next round. The
ACF algorithm shares the basic alternation approach, but it
only indirectly influences the abstractions used in an analysis
through conditioning, e.g., predicate abstraction may key off
assume statements. The analyses described above seek to
either prove a program free of failures or produce a failure
witness. In contrast, ACF accumulates and generalizes the set
of witnesses until it can prove remaining program behavior
free of failure, at which point it returns a CFC.

Our work builds on an increasingly sophisticated and cost-
effective corpus of static analysis and verification tools. The
2017 Competition on Software Verification [46] involved 32
C static analysis tools. SV-COMP defines a rich error witness
interchange format [7] which facilitates the combination of
analyses in ACF. Our selection of CPA and UA was based
largely on the robustness of those tools and their performance
in the two most recent SV-COMP instances, but the tools
in the competition represent an enormous range of technical
approaches, and one could easily constitute an instance of ACF
out of a much larger portfolio of these techniques.

A key aspect of ACF is the use of assumptions to block A
from analyzing portions of the program state space. This is
inspired by the conditional model checking approach devel-
oped by CPA [5]. In essence, the iterations of ACF build an
increasingly general condition that blocks potentially failing
behavior until the remaining behavior is failure-free. Unlike
conditional model checking, ACF uses generalization (spe-
cialization) techniques to broaden (restrict) the upper (lower)
bound of potentially failing program sub-spaces so as to
compute safe CFCs.

We use the CIVL symbolic execution system for C [42]
as A since it too participated in the two most recent SV-
COMP competitions. Unlike the overapproximating analyses

we used, we had to modify CIVL to incorporate it into ACF.
This was primarily due to the need to direct the symbolic
execution to a potentially failing sub-space of behavior. We
note that this simply implements the idea of directed symbolic
execution from the work of Ma et al [35]. We could have
incorporated other underapproximating analyses into ACF,
such as CBMC [15] or its successors, with appropriate support
for direction.

From the CFC perspective, the most closely related work is
from Kim et al. [31] and Gu et al. [28]. Kim et al. introduce the
notion of “bug neighborhood” which is conceptually similar
to the upper bound of a CFC, but it is formulated only in
the case of null-reference failures, it does not characterize
the failure space constructively in terms of the program input
space, and it does not provide a definitive lower bound. Gue
et al. introduce the notion of the “coverage of a fix”, i.e., the
extent to which a fix handles all inputs that trigger a bug. CFCs
seek to accurately and safely characterize the failure to provide
an upper bound on the required coverage for a fix. While Gu
et al. rely on a bounded series of successively general under-
approximations to maximize coverage, ACF uses alternation.
This allows ACF to exploit the power of overapproximating
abstraction to efficiently summarize non-failing program sub-
spaces and, ultimately, converge with a safe upper bound.

VIII. CONCLUSIONS

This paper introduces the concept of a comprehensive fail-
ure characterization which provides a constructive formulation
of the failing input space of a program. It also presents
a general algorithmic framework for computing CFCs that
exploits the power of alternating over and under-approximating
static analyses along with refinment approaches. The ACF
framework is guaranteed to compute safe CFCs and it incor-
porates several mechanisms to improve their accuracy.

Data from an exploratory study on a prototype implemen-
tation of ACF for C programs reveals that it is possible to
compute CFCs with a good degree of accuracy in a matter of
hours. Moreover, the study reveals multiple opportunities for
optimization that offer the chance to significantly reduce ACF
runtime and thereby enable more thorough generalization (by
running more than one round) which will boost accuracy.

The ACF framework can incorporate a wide-variety of
analyses and strategies and our future work will explore that
space. We plan to enrich the analysis portfolio to include
all of the SV-COMP competitors. We plan to explore addi-
tional generalization strategies including those that are based
on semantics using, for instance, logical interpolation. We
plan to apply ACF to compute CFCs for larger C subject
programs with faults, such as those in the SIR repository
(http://sir.unl.edu), and to integrate ACF as a front-end analysis
to improve the performance and solution quality of synthesis-
based program repair and quantitative program analysis.

REFERENCES

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-
approximations to over-approximations and back. In Proceedings of
the 18th International Conference on Tools and Algorithms for the

10

Construction and Analysis of Systems, TACAS’12, pages 157–172,
Berlin, Heidelberg, 2012. Springer-Verlag.

[2] A. Albarghouthi, A. Gurfinkel, O. Wei, and M. Chechik. Abstract anal-
ysis of symbolic executions. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’10, pages 495–510,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs
from tests. In Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ISSTA ’08, pages 3–14, New York, NY,
USA, 2008. ACM.

[4] D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with
continuously-refined invariants. In International Conference on Com-
puter Aided Verification, pages 622–640. Springer, 2015.

[5] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Condi-
tional model checking: a technique to pass information between verifiers.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 57. ACM, 2012.

[6] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for con-
figurable software verification. In Computer Aided Verification, pages
184–190. Springer, 2011.

[7] D. Beyer and P. Wendler. Reuse of verification results. In Model
Checking Software, pages 1–17. Springer, 2013.

[8] M. Borges, A. Filieri, M. d’Amorim, and C. S. Păsăreanu. Iterative
distribution-aware sampling for probabilistic symbolic execution. In Pro-
ceedings of the 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE 2015. ACM, 2015.

[9] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and W. Visser.
Compositional solution space quantification for probabilistic software
analysis. SIGPLAN Not., 49(6):123–132, June 2014.

[10] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[11] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving
Fast with Software Verification, pages 3–11. Springer International
Publishing, Cham, 2015.

[12] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 380–394. IEEE, 2012.

[13] CIVL: Concurrency Intermediate Verification Language. https://vsl.cis.
udel.edu/civl, Accessed May 1, 2017.

[14] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement, pages 154–169. Springer Berlin Hei-
delberg, 2000.

[15] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), pages 168–176. Springer, 2004.

[16] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTREÉ Analyzer, pages 21–30. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[17] CPACHECKER tool. https://github.com/dbeyer/cpachecker, Accessed
Nov. 10, 2015.

[18] P. Daca, A. Gupta, and T. A. Henzinger. Abstraction-driven concolic
testing. In Proceedings of the 17th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation - Volume 9583,
VMCAI 2016, pages 328–347, New York, NY, USA, 2016. Springer-
Verlag New York, Inc.

[19] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, Mar. 1997.

[20] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verifi-
cation in polynomial time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation,
PLDI ’02, pages 57–68, New York, NY, USA, 2002. ACM.

[21] D. L. Dill and H. Wong-Toi. Verification of real-time systems by
successive over and under approximation. In Proceedings of the 7th
International Conference on Computer Aided Verification, pages 409–
422, London, UK, UK, 1995. Springer-Verlag.

[22] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. Statistical
symbolic execution with informed sampling. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 437–448. ACM, 2014.

[23] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in Sym-
bolic Pathfinder. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 622–631, Piscataway, NJ,
USA, 2013. IEEE Press.

[24] K. Friedberger. Cpa-bam: Block-abstraction memoization with value
analysis and predicate analysis. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
912–915. Springer, 2016.

[25] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic
execution. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 166–176, New York,
NY, USA, 2012. ACM.

[26] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[27] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. Composi-
tional may-must program analysis: Unleashing the power of alternation.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’10, pages 43–56, New
York, NY, USA, 2010. ACM.

[28] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug really been
fixed? In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 55–64, New York,
NY, USA, 2010. ACM.

[29] W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. Alternation
for termination. In Proceedings of the 17th International Conference
on Static Analysis, SAS’10, pages 304–319, Berlin, Heidelberg, 2010.
Springer-Verlag.

[30] M. Heizmann, J. Hoenicke, and A. Podelski. Software Model Checking
for People Who Love Automata, pages 36–52. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013.

[31] M. Kim, S. Sinha, C. Görg, H. Shah, M. J. Harrold, and M. G. Nanda.
Automated bug neighborhood analysis for identifying incomplete bug
fixes. In Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation, ICST ’10, pages 383–392,
Washington, DC, USA, 2010. IEEE Computer Society.

[32] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automatic software repair. IEEE Transactions on Software
Engineering, 38(1):54–72, 2012.

[33] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pages 15–26, New York, NY, USA, 2005. ACM.

[34] K. Luckow, C. S. Păsăreanu, M. B. Dwyer, A. Filieri, and W. Visser.
Exact and approximate probabilistic symbolic execution for nondeter-
ministic programs. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Eng ineering, ASE ’14, pages 575–
586, New York, NY, USA, 2014. ACM.

[35] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In Proceedings of the 18th International Conference on Static
Analysis, SAS’11, pages 95–111, Berlin, Heidelberg, 2011. Springer-
Verlag.

[36] P. D. Marinescu and C. Cadar. Katch: High-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 235–245, New York,
NY, USA, 2013. ACM.

[37] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages
691–701, New York, NY, USA, 2016. ACM.

[38] C. S. Pasareanu, Q. Phan, and P. Malacaria. Multi-run side-channel
analysis using symbolic execution and max-smt. In IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27
- July 1, 2016, pages 387–400, 2016.

[39] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang. Automated support for classifying software failure
reports. In Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 465–475, Washington, DC, USA, 2003.
IEEE Computer Society.

[40] Polyspace code prover. https://www.mathworks.com/products/
polyspace-code-prover.html, Accessed May. 1, 2017.

[41] D. A. Schmidt. A calculus of logical relations for over- and underap-
proximating static analyses. Sci. Comput. Program., 64(1):29–53, Jan.
2007.

[42] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.
Edenhofner, M. B. Dwyer, and M. S. Rogers. CIVL: The Concurrency
Intermediate Verification Language. In SC15: International Conference

11

for High Performance Computing, Networking, Storage and Analysis,
Proceedings, SC ’15, Piscataway, NJ, USA, Nov 2015. IEEE Press. To
appear.

[43] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan. Alternate and
learn: Finding witnesses without looking all over. In Proceedings of the
24th International Conference on Computer Aided Verification, CAV’12,
pages 599–615, Berlin, Heidelberg, 2012. Springer-Verlag.

[44] SV-COMP benchmarks. https://github.com/sosy-lab/sv-benchmarks,
Accessed May 1, 2017.

[45] SV-COMP 2016 results. https://sv-comp.sosy-lab.org/2016/results/, Ac-
cessed May 1, 2016.

[46] SV-COMP 2017 results. https://sv-comp.sosy-lab.org/2017/results/, Ac-
cessed May 1, 2017.

[47] ULTIMATEAUTOMIZER tool. https://monteverdi.informatik.
uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer, Accessed
May 1, 2017.

[48] B. Xin and X. Zhang. Efficient online detection of dynamic control
dependence. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 185–195. ACM, 2007.

[49] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus. Nopol: Automatic repair of
conditional statement bugs in java programs. IEEE Trans. Softw. Eng.,
43(1):34–55, Jan. 2017.

[50] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How
do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 26–36, New York, NY,
USA, 2011. ACM.

[51] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving:
Better together! In Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ISSTA ’06, pages 145–156, New York,
NY, USA, 2006. ACM.

12

